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sequence in Scheme I would have yielded isoavenaciolide, 
contrary to the experimental results. 

Hydrogenation of 4 in ethanol over 10% Pd-C afforded 5 
(87%) as a noncrystalline material (m/e 328 (M), 327 (M 
— 1). Treatment with acid caused simultaneous removal of 

the acetonide and lactonization to the hemiacetal 6 in 95% 
yield (Anal. (Ci4H2 4O4) C, H). Oxidation11 of 6 afforded 
the bislactone 7 (77%) which had been obtained previously 
in racemic form by Parker and Johnson, in the first synthe
sis of dl avenaciolide.3a Accordingly 7 was transformed to 1 
in 50% yield as described by these workers.32 The resulting 
material had a 1H N M R spectrum identical with a sample 
of the dl mixture kindly supplied by Dr. Johnson.33 

For this preparation of 1, mp 50-51° and [a] 29.5 D = 

-41.08° (c 0.274 in EtOH).9 (Anal. (Ci5H2 2O4) C, H). 
For naturally occuring avenaciolide4, mp 49-50°, 54-56° 
and [a]2 6 5D = -41 .6° (c 1.27 in EtOH). For <//-avenaciol
ide,3 mp 54-57°. 

The foregoing therefore indicates that the chirality of 
naturally occuring avenaciolide is (3aJ?, AR, 6aR) and not 
(3aS, 45, 6aS) as previously suggested.4,5 In addition con-
figurational assignments of this entire series of fungicides 
are also probably incorrect, since these had been related to 
avenaciolide.10 Syntheses of these analogs are underway 
and will be reported in due course. 
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Molybdenum(O) and Tungsten(O) Interactions with 
Olefins. Direct Observation of Reversible 
Hydrogen Exchange Processes by Nuclear 
Magnetic Resonance 

Sir: 

Molybdenum and tungsten species are known to catalyze 
several olefin reactions (e.g., metathesis) but little mecha
nistic data are available. We present here some studies on 
the interaction of olefins with zerovalent complexes of these 
metals and the observation of hydrogen transfer processes 
central to several catalytic processes. 
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Figure 1. Variable temperature 1H NMR spectrum at 100 MHz of 
HMo(C2H4)2(diphos)2 in CD2Cl2 (* is impurity). 

/rarts-Mo(N2)2(diphos)2 (diphos = Ph2PCH2CH2PPh2)1 

when heated with C2H4 (1 atm) in benzene at 55° for 2 
hours yields orange crystals of Mo(C2H4)2(diphos)2

2-3 (1). 
The tungsten analog W(C2H4)2(diphos)2 was best prepared 
by reduction (Na-Hg) in THF of WCUCdiphos) in presence 
of diphos (1 mol) and excess C2H4. 

The 1H N M R of 1 in CeDg at 25° shows resonances of 
coordinated ethylene at r 9.10 and 9.35 (broad, 4 H:4 H). 
At 98°, these two resonances coalesce and form a quintet 
(•/p-H - 5 Hz). The corresponding 31P decoupled spectrum 
at 25° (although poorly resolved) is consistent with an 
AA'BB' pattern which at 98° yields a sharp singlet. The 31P 
spectrum (1H decoupled) is a singlet at —62.1 ppm (relative 
to 85% H3PO4 external reference) in toluene from 25 to 
—85°. On this basis and chemical observations,4 a trans oc
tahedral structure is assigned as shown below. Presumably 

the trans stereochemical arrangement prevents metallocycle 
formation as found for Ir(I)5 and Ti(II).6 Interestingly, the 
ethylene molecules are staggered with respect to one anoth
er and eclipse the trans P -Mo-P vectors. Rapid rotation 
about the metal-olefin bond occurs at 98° with an estimat
ed barrier of 15.3 kcal mol - 1 . 

Protonation of 1 with CF3COOH (1 mol) in C6H6 at 5° 
yields HMo(C2H4)2(diphos)2

+CF3COO_ as orange-brown 
crystals. The 1H N M R in CD2Cl2 at 7° (Figure 1) shows 
inter alia vinylic resonances at T 8.78 and 9.32 (relative in
tensities 2 H:2 H) and broad singlet at r 11.33 (5 H). On 
cooling the solution, the resonance at T 11.33 broadens and 
at —85°, new resonances grow in at ca. r 9.62 and 10.04 
(total integrated intensity of vinylic resonances now 8 H), 
and a broad unresolved resonance7 appears at T 18.23 (1 
H). Clearly this latter resonance results from a Mo-H in
teraction, which at +7° exchanges rapidly and reversibly 
with half of the bound ethylene protons. This is the first 
case8 where the insertion-deinsertion process, fundamental 
to many catalytic mechanisms, can be observed directly. 
The ethyl derivative is presumably the intermediate, viz. 
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Figure 2. Variable temperature 1H NMR spectrum at 100 MHz of 
HMo(7r-C3H5)(diphos)2 (* is impurity). 

Protonation occurs by capping an octahedral face (cf. 
HTa(CO)(Me2PCH2CH2PMe2); ,)9 and exchange occurs 
only with the proximate ethylene. In agreement with this, 
both the protonation-deprotonation process and intramo
lecular rearrangement7,9 are found to be slower than the 
hydrogen exchange process. 

A different interaction occurs when propylene is used. 
Treatment of MoCl3(THF)3

1 3 with Na-Hg in THF under 
propylene (1 atm) and in the presence of diphos (2 mol) 
yields an orange complex. Analytical, chemical, and spec
troscopic (vide supra) data show this to be the 7r-allyl-hyd-
ride complex, HMo(7r-C3H5)(diphos)2. This is very sta
ble,10 decomposing only at >110° to yield propylene. The 
1H NMR (Figure 2) at +5° in benzene-^ shows the 
metal-hydride resonance as a quintet (7P_H = 37 Hz) at T 
12.60 and Tr-C3H5 signals are at T 9.62, 8.84, and 6.28 (2 
H:2 H:l H). On raising the temperature, the resonances at 
T 12.60, 9.62, and 8.84 collapse (but not that at T 6.28), and 
a signal at the average position (T 10.12; 5 H) appears at 
4-101°. Here we are observing exchange of the metal hy
dride with the terminal hydrogens of the 7r-allyl group— 
with the propylene complex presumed as intermediate. No 
exchange of the unique proton of the allyl group would 
occur, as is observed. 

Mo; 
CH3 
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Hence this provides the direct observation of the ir-al-
lyl-hydride exchange mechanism proposed for 1,3 hydride 
shifts found in many metal catalyzed olefin reactions. 
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Electron-Transfer Reactions in Metalloporphyrins 

Sir: 

This report describes some experiments concerning elec
tron-transfer reactions with metalloporphyrins that demon
strate that the path of electron transfer to the metal ion 
center can be via the porphyrin 7r-cloud and not via the fifth 
and sixth metalloporphyrin ligand positions.1-4 

The reduction of the water-soluble tetra[p-sulfonato-
phenyl]porphinatocobalt(III), Co(III)-TPPS,5-7 by chro-
mous ion leads to the below rate law which is similar to the 
previously observed rate laws for the reduction of metallo
porphyrins.1,2'8 

rate of reduction = 
jfci/[H+] + Zt2[Cl-] + / t3[SCN-] | [Cr2+][Co111TPPS] 

The rate constants in the above equation evaluated at 30° 
and an ionic strength of 0.25 (NaClCU) are k\ = 4.9 sec - 1 , 
k2 = 2.9 X 104 M'1 sec - 1 , and Jc3 = I J X 106 M~2 sec - 1 . 
The results are valid between pH 1.0 and 5.O.9 

Since the rate of Co111TPPS-SCN formation is slower 
than the electron transfer10-11 a bridged C o ( I I I ) - N - C - S -
Cr(II) reaction pathway can be ruled out. This is in agree
ment with the studies of Pasternack and Sutin.2 

To further probe the mechanism of this reaction a prod
uct study was carried out which demonstrates that the reac
tion products have the Cr(III) bound to the Co(II)-TPPS 
moiety. This was verified by carrying out the reaction under 
stoichiometric conditions employing 51Cr as a tracer12 and 
using cation exchange columns to separate the products.14 

We infer that the Cr(III) is attached to the sulfonate 
group as shown in structure I. These experiments imply that 

"SO3 SO3
--Cr'"" 

I 

the electron-transfer goes via the porphyrin 7r-cloud and not 
via the fifth and sixth position15 and also clearly demon
strate that the anion effects in these metalloporphyrin re
ductions are due to nonbridging ligand effects. 
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Nickel-Promoted Synthesis of Cyclic Biphenyls. Total 
Synthesis of Alnusone Dimethyl Ether 

Sir: 

Organotransition metal complexes are appearing with in
creasing frequency in synthetic methodology and in com-
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